X-ray tomographic microscopy analysis of the dendrite orientation transition in Al-Zn
نویسندگان
چکیده
Recently, Gonzales and Rappaz [Met. Mat. Trans. A37:2797, 2006] showed the influence of an increasing zinc content on the growth directions of aluminum dendrites. 〈100〉 and 〈110〉 dendrites were observed below 25wt.% and above 55wt.% zinc, respectively, whereas textured seaweeds and 〈320〉 dendrites were observed at intermediate compositions. Considering the complexity of these structures, it is necessary to first characterize them in further details and second, to model them using the phase field method. The so-called Dendrite Orientation Transition (DOT) was thus reinvestigated in quenched Bridgman solidification samples. The combination of X-ray tomographic microscopy and electron backscattered diffraction (EBSD) analysis on a whole range of compositions, from 5 to 90wt.% Zn, allowed insights with unprecedented details about texture, growth directions and mechanisms of the aforementioned structures. We show that seaweeds rather than dendrites are found at all intermediate compositions. Their growth was confirmed to be constrained within a (100) symmetry plane. However, new findings indicate that the observed macroscopic texture does not necessarily correspond to the actual growth directions of the microstructure. Further, it seems to operate by an alternating growth direction mechanism and could be linked to the competition between the 〈100〉 and 〈110〉 characters of regular dendrites observed at the limits of the DOT. These characters, as well as 3D seaweeds, are observed in phase-field simulations of equiaxed growth and directional solidification, respectively. This study emphasizes the importance of accurate experimental data to validate numerical models and details the progress that such combinations provide for the understanding of growth mechanisms.
منابع مشابه
Dendritic Growth Morphologies in Al-Zn Alloys—Part II: Phase-Field Computations
In Part I of this article, the role of the Zn content in the development of solidification microstructures in Al-Zn alloys was investigated experimentally using X-ray tomographic microscopy. The transition region between h100i dendrites found at low Zn content and h110i dendrites found at high Zn content was characterized by textured seaweed-type structures. This Dendrite Orientation Transition...
متن کاملEBSD: a powerful microstructure analysis technique in the field of solidification.
This paper presents a few examples of the application of electron back-scatter diffraction (EBSD) to solidification problems. For directionally solidified Al-Zn samples, this technique could reveal the change in dendrite growth directions from <100> to <110> as the composition of zinc increases from 5 to 90 wt%. The corresponding texture evolution and grain selection mechanisms were also examin...
متن کاملخواص ساختاری و ابررسانایی نمونههای (YBa2Cu3-xMxOy (M=Ag, Al
Samples of YBa2Cu3-xAgxOy with x=0, 0.1, 0.15, 0.2, 0.3 and samples of YBa2Cu3-xAlxOy with x=0, 0.01, 0.02, 0.03 and 0.045 are prepared by the sol-gel method. Structural and superconducting properties of samples are studied by electrical resistivity (R-T), X-ray diffraction (XRD) and scanning electron microscopy (SEM). All the samples show transition to superconducting state and the transitio...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملThe Effect of Transition Metals Incorporation on the Structural and Magnetic Properties of Magnesium Oxide Nanoparticles
Pure and doped magnesium oxide nanoparticles were successfully synthesized employing a sol-gel process. The synthesized nanoparticles were characterized by thermal differential analysis, X-ray powder diffraction, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometer. X-ray diffraction patterns confirmed the crysta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012